Главная > Лазерные указки… > О лазерных указках

О лазерных указках

КАТАЛОГ ЛАЗЕРНЫХ УКАЗОК ЗДЕСЬ >>>

О лазерных указках в целом: Лазерная указка — портативное устройство, генерирующее узконаправленный луч лазера в видимом световом диапазоне. В большинстве случаев изготавливается на основе лазерного светодиода, который излучает в диапазоне 473 — 650 нм. Излучение светодиода фокусируется в линию за счет двояковыпуклой линзы. Из за того, что диод излучает не направлено, значительная часть излучения падает на внутренние стенки корпуса и поглощается. В связи с этим КПД лазерной указки низкий. Однако при качественной фокусировке луча (которую можно произвести самостоятельно подкручивая прижимную гайку линзы), указку можно использовать для проведения опытов с лазерным лучом (например для изучения интерференции)
Световое пятно, образуемое лазерной указкой, привлекает кошек (и собак), вызывая сильное стремление поймать его, что нередко используется людьми в играх с этими домашними животными. Не следует забывать, что луч лазерной указки, направленный в глаза человека или животного, может повредить сетчатку.

НАЖМИТЕ ЗДЕСЬ: (фиолетовая лазерная указка 200 мВт с насадкой "звездное небо"

Использование лазерных указок: Лазерные указки широко применяются в офисах на различных совещаниях и презентациях. В планетариях уже давно используются зеленые лазерные указки для того чтобы можно было даже не сведущему в астрономии человеку показать любую звезду и созвездие. Также любители звездного неба могут своим друзьям указать на любое небесное тело.
Психологи уже давно доказали влияния цветового раздражителя на принятие решения, имено зеленый цвет будет создовать спокойствие и согласие. Ваши презентации станут более эффектными и эффективными, и вы легко превзойдете своих конкурентов. Эта удобная и элегантная вещь также может быть хорошим презентом для ваших близких или партнеров. Компактная лазерная указка потребляет совсем немного энергии от батарей и имеет длительный срок службы 3000-5000 часов.

Но все ли они безопасны? Способны ли лазерные лучи навредить? Каковы последствия их вредного действия? К сожалению, на все эти вопросы приходится отвечать утвердительно. Вопреки распространенному мнению лазерные указки – не игрушки, и они не только могут оказывать вредное воздействие на людей или животных, но и приводить к проблемам с законом. Только не реагируйте на это чересчур эмоционально и не спешите избавляться от лазерных указок. Все, что вам нужно сделать – это понять и запомнить несколько канонов использования лазерных устройств.

Внимание! Прежде всего, никогда и ни при каких обстоятельствах не направляйте луч лазерной указки на транспортные устройства с пассажирами, на люде и животных. Луч может отвлекать и даже способен на время ослепить человека, что может привести к катастрофе, если ослепленный лучом человек управляет транспортным средством на скорости 100 км/ч, а вокруг бетонные ограждения. Не забывайте об этом! Если же вы направляете луч лазера на самолет, вы однозначно преступаете закон, впоследствии от обвинения будет сложно отвертеться. Поэтому всегда смотрите, куда направляете луч лазерной указки.

Лазерная революция медленно, но верно охватывает весь мир, так как все больше и больше людей приобретают себе лазерные указки. Если вы еще не являетесь счастливым обладателем лазерной указки, вы, в каком-то смысле, все еще живете в каменном веке. Никогда еще настолько совершенные приборы не были так доступны (не говоря уже о том, что многие высокоэнергетичные лазерные указки способны зажигать спички, прожигать пленку, взрывать воздушные шарики и тому подобное). Эволюция лазера была стремительна и ни на миг не останавливалась. Лазерные технологии охватывают многие применения: от простых указок для презентаций до мощных военных установок с концентрированными лазерными лучами. Никогда еще не было так просто приобщиться к достижениям лазерных технологий и купить лазерную указку. Главное – никогда не забывать о канонах безопасности при использовании лазерных устройств.

Области применения лазеров

Появление лазера в 1960 году положило начало бурному развитию различных областей науки и техники. Но не только. Лазеры привели к появлению принципиально новых, не виданных до того времени устройств и таких направлений науки как интегральной и нелинейной оптики, голографии, лазерной химии. Само слово «лазер» происходит от английского определения «Light Amplification by Stimulated Emission of Radiation».

      Лазеры бывают:

  • Газовые (аргоновые, гелий-неоновые, на монооксиде углерода и углекислом газе, эксимерные).
  • Твердотельные (александритовые, рубиновые, кристаллические с иттербиевым легированием, алюмо-иттриевые, титан-сапфировые, микрочиповые).
  • Полупроводниковые лазерные диоды (в указках, принтерах, CD/DVD).
  • С помощью лазерных технологий стала возможна сварка, резка, сверление, закалка материалов без появления в них внутреннего напряжения, чего невозможно было достигнуть при механической обработке. Точность такой обработки достигает буквально микрометра, и лазеру без разницы, что именно он обрабатывает – металл или алмаз. В микроэлектронике предпочтительней не пайка соединений, а сварка, и луч лазера отлично справляется со своей задачей. Также существует лазерное охлаждение и намагничивание. Излучатель еще очень успешно применяют в термоядерном синтезе.

    Сегодня лазер незаменим также и в медицине. Он применяется в хирургии, офтальмологии, гинекологии, онкологии и косметической хирургии. Например, при операциях на глазном яблоке лазер способен приваривать отслоившуюся сетчатку не травмируя сам глаз. Лазер может выжигать как доброкачественные, так и злокачественные опухоли. Также его успешно используют в стоматологии для отбеливания зубов и бескровной имплантации. И очень радует перспектива использования луча для остановки кровотечений у людей с малой свертываемостью крови.

  • Астрономия с помощью лазера также смогла вынести на совершенно иной уровень качество своих исследований. Так, например, с помощью рубиновых лазеров ученые смогли более точно определять расстояние от Земли до других космических тел. Точность картографирования поверхности планет теперь составляет до 1,5 м. А с помощью полупроводниковых лазеров осуществляется связь со спутниками.

    Незаменим лазер при геодезических измерениях, а также при регистрации сейсмической активности коры Земли. В геофизике с высокой точностью определяют высоту облаков, исследуют такие явления, как турбулентность и инверсионные следы.

  •  

    В авиации используют лазерные гироскопы, высотомеры и измерители скорости полета. Немаловажно и то, что лазер помогает точно и правильно посадить самолет, и тем самым обеспечивает безопасность экипажа и пассажиров.

    Все знают о лазерном прицеле, который повышает точность попадания стрелка в цель. Луч повсеместно применяется в вооружении армий самых разных стран мира. С его помощью не только метко стреляют, но и устраивают помехи противнику и системы обнаружения снайперов, а также разрабатывают методы введения врага в заблуждение.

  •  

    Лазеры окружают нас и в повседневной жизни. С их помощью мы прослушиваем компакт-диски, записываем данные, распечатываем информацию на принтерах. Кассиры в супермаркетах лазером считывают штрих-коды с продукции. С его помощью добавляют субтитры на экран, с лазерными указками преподаватели объясняют материал. А молодежь вечером восхищается на дискотеке феерическими лазерными шоу.

    Сейчас на стадии разработки такие технологии, как голографическая запись информации и оптические методы ее хранения и передачи, а также проекционное телевидение.

  •  

    Особенности и возможности современных лазерных рулеток и уровней

    Сегодня лазерная точность нужна повсеместно

    При разбивке участков земли, монтаже коммуникаций, строительстве зданий, отделке помещений и многих других работах в последнее время часто используют эффективные измерительные приборы – лазерную рулетку и уровень.
    Рулетка необходима для определения геометрических размеров объектов с высокой точностью. Принцип действия ее основан на измерениях продолжительности прохождения импульса до объекта и обратно. Уровни применяют для внутренних разметочных работ, маркировки отверстий при строительстве и отделке помещений.

    Функциональные особенности рулеток


    Прибор состоит из лазера, клавиатуры, вычислительного устройства, а также дисплея жидкокристаллического. Часто дополнительно рулетка может быть оборудована оптическим визиром. Излучатель может быть либо жестко зафиксированным, либо закрепленным в свободном состоянии (самовыравнивающимся). Кроме этого, современные модели имеют встроенную память и при необходимости – возможность синхронизации с компьютером.
    Модели приборов могут классифицироваться по некоторым признакам. Прежде всего, по дальности измерений, т. е. максимальному расстоянию, которое способна измерить рулетка с высокой точностью. Так, производят модели, эффективная измерительная длина которых составляет не более 50 метров. Они очень удобны для проведения измерений в помещениях и имеют погрешность не более 1.5 миллиметров.

    Дополнительными функциями являются вычисление площади или объема помещения, сложение и вычитание величин, произведенных замеров. Кроме прочего, рулетка подобного типа компактна, проста в использовании и производит точные измерения.

    Прибор, измеряемый расстояния до ста пятидесяти метров часто называют также дальномером. С помощью его можно проводить измерения не только в помещениях, но и в открытом пространстве, а также осуществлять измерение расстояний между различными объектами. Погрешность измерений при этом составляет не более трех миллиметров.

    Помимо этого, необходимо выделить третью модель дальномеров, которые имеют функцию Bluetooth и, соответственно, имеют возможность передачи информации беспроводным способом. Они могут работать с другими необходимыми программами и приложениями, в зависимости от требуемых задач.
    Также следует рассмотреть цифровую рулетку, предназначенную для измерения небольших расстояний (до пяти метров) с высокой точностью. Такой прибор имеет цифровую индикацию, функцию сохранения значения последнего произведенного измерения, автоматическое отключение, а также очень компактный.
    Электронные рулетки представляют собой точнейшие приборы для измерения самых разных размеров, как вне помещений, так и внутри. Результаты вычислений и измерений выводятся на дисплей практически моментально.
    Все модели описываемых приборов производятся для промышленного или производственного применения и бытового использования.

    Основные особенности лазерных уровней


    Уровни обычно производят двух видов – прибор с оптической системой, которая разворачивает луч в плоскость, и построитель точек. Последняя модель часто применяется во время отделочных и других ремонтных работах. Такой уровень эффективен при прокладке коммуникаций, заливке полов, укладке плитке. Уровень со встроенными призмами, которые способны разворачивать луч, является более совершенным и многофункциональным.
    Также уровни можно разделить на приборы ротационного, самонастраивающегося и строительного типа. Последние применяются для произведения разметки для отделочных работ, маркировки отверстий и других измерений, когда требуется построение точки на любом расстоянии, минуя существующие преграды.
    Второго типа лазерный уровень очень удобен, т. к. экономит время на регулировку поворотного основания уровня и позволяет настроить вертикальную или горизонтальную линии нажатием на одну кнопку. Ротационный уровень представляет собой такой прибор, который производит наклонные, вертикальные и горизонтальные измерения за счет вращения луча. Применяется он чаще на открытых пространствах, т. к. его луч хорошо виден на достаточных расстояниях при солнечном свете. Прибор имеет вращающийся излучатель и два горизонтальных луча.

    Современные лазерные рулетки и уровни позволяют быстро и очень точно производить измерения различных размеров при выполнении многих видов работ.


    Данные материалы являются авторскими.

    Частичное или полное копирование всех составляющих частей сайта в какой бы то ни было форме разрешено только при размещении прямой активной ссылки на сайт http://www.lannat.umi.ru

  •  

    В Австралии запретили лазерные указки

    В аэропортах крупного австралийского штата Новый Южный Уэльс были запрещены брелоки с лазерными указками. Произошло это после серии инцидентов, когда пилоты самолетов были временно лишены зрения этими указками.

    Мощные карманные лазеры, включая, так называемые, "звездные указки" на основе лазеров, используемые астрономами, вошли в черный список как вид запрещенного оружия в штате New South Wales. Пассажиры, не имеющие особого разрешение на их провоз, получат 14 лет тюремного заключения в случае попытки провезти такое "оружие".

    "Такое безответственное поведение может привести к ужасным последствиям. Достаточно лишь на долю секунды навести указку на глаза пилота, чтобы ослепить его на некоторое время, за которое может произойти жуткая катастрофа", - говорит премьер-министр штата Моррис Имма.

    Несколько пилотов недавно сообщали об опасных лазерных лучах, гуляющих по их кабинам по время взлета и приземления. Полиция в ответ на это организовала спецслужбу по борьбе с "помешанными на лазерах" (laser lunatics) как их окрестили газеты. Последний инцидент произошел в минувшие выходные, когда пилот вертолета, направлявшегося на юг Сиднея, был поражен зеленым лучом лазера.

    Маленький лазер с лучами синего и зелёного цветов способен прожечь насквозь тонкую пластмассу, взорвать надутый детский шарик, поджечь бумагу и ослепить человека. Лучи эти видны даже сбоку (конечно, не в вакууме), в отличие от недорогих "красных" указок, которые себя обнаруживают лишь по яркому пятнышку на цели. В общем-то, даже маленькие красные лазеры со слабым лучом (как правило, от 0,5 до 1-2, и реже - до 5 милливатт, что массово продаются в магазинах), опасны при прямом попадании в глаза. Дело тут не столько в мощности, сколько в маленьком диаметре луча, который бесповоротно повреждает отдельные клетки сетчатки. Во многих странах их продажа уже запрещена.

    Дата: Четверг, 01 Октября 2009

  •  

    Немного о лазерных указках

    Трудно найти человека, который не знал бы, что такое «лазерная указка». Расцвет популярности этих устройств с мощностью луча до 5 мВт в России пришелся на 90-е годы — уж очень красная точка напоминала прицел снайперской винтовки. С того времени «лазерный прогресс» шагнул далеко вперед. Но я даже не подозревал насколько.Знакомство с новым поколением лазерных указок случилось у меня случайно, в одном из ночных клубов Пекина. Помимо диджея (DJ), атмосферу на танцполе в клубе создает еще и виджей (VJ) — человек, занимающийся осветительным и дымовым оборудованием. Решив понаблюдать за работой диджея, я увидел, как виджей достал из кармана металлический стержень размером с сигару и направил его на зеркальный диско-шар. В следующую секунду с кончика «сигары» сорвался тонкий зеленый луч, который, столкнувшись с шариком, разбился на множество лучей поменьше и осветил танцпол. Сказать, что я был удивлен, значит не сказать ничего. Я был в шоке. До этого времени я видел только стационарные лазерные клубные установки с подобным эффектом. А тут — все уместилось в тоненькой «ручке».

    Самое главное в новом поколении «указок» то, что вы видите не только точку, но сам луч. Он может быть трех цветов — зеленым, синим или красным. При этом луч бьет на огромное расстояние — до 5 км. в условиях городской загазованности.

    В зависимости от мощности — от 15 мВт до 125 мВт — вы можете просто наслаждаться зрелищем или шалить, лопая, к примеру, воздушные шарики, поджигая спички или даже сигареты. Чем мощнее луч и чем темнее поверхность, на которую попадает лазер, тем легче добиться «шаловливого» эффекта.

    Одним из самых известных производителей, торгующих лазерами через Интернет, является китайская компания WickedLasers.com. Цены на сайте просто фантастические: начинаются со $150 и заканчиваются $1700.

    Решив поискать в оффлайне, я тут же нашел старую модель Nexus с лазером на 35 мВт по цене в 200 юаней (около 25 долларов). За эти деньги в подарочной коробочке я получил лазер в черном корку на хорошем английском языке (содержание вкратце: в глаза не направлять, батарейки менять чаще).

    И действительно, батарейками лучше запастись. При этом самыми дорогими литиевыми или щелочными. Одна пара батарей даст вам 15-20 минут яркого лазерного шоу. Затем луч становится все тоньше и исчезает.

    На свежих батарейках лазер легко «добил» до здания, находящегося в двух километрах. Ночью луч виден четко и ярко. Точка на стенах очень большая. При этом появляется ощущение ирреальности — будто лазер просто подрисовали в окружающий мир с помощью Photoshop’a.

    Невероятный эффект достигается, опять же, в ночном клубе. Однако на несанкционированную иллюминацию тут же реагирует служба безопасности, которая просит не использовать лазер в клубе. Просят, в общем-то, правильно. Попав в глаз посетителю, лазер может вызвать яркое недовольство. Случайно попав себе в глаз лучом от свежих батарей, я на собственной шкуре почувствовал, что эта игрушка — вовсе не игрушка. В течение часа наблюдались проблемы со зрением — белые пятна, размытость. Я действительно испугался и порадовался, что купил не самую мощную модель. Конечно, можно приобрести еще и специальные защитные очки, но они портят всю картинку — лучше просто не направлять лазер в глаза.

    Кстати, и обычными «шутками» злоупотреблять не надо. Мне до сих пор стыдно за одно происшествие. Сидя на балконе и «прогуливаясь» лазером по соседнему дому (метрах в 200 от моего), я задержался на одном окне и порисовал на нем зигзаги. Зажегся свет, к окну подлетел китаец, начал вглядываться в темноту, после чего задернул шторы и выключил свет. Интересно, как ему спалось, о чем он думал?

    Выводы: отличная игрушка, супернаходка для DJ и VJ, но может пригодиться и профессионалам. Минус — малое время работы от батарей. Если вы живете не в Поднебесной, цена на игрушку будет впечатляющей. По крайней мере, совсем не игрушечной.

  •  

    Разновидности лазеров

    Твердотельные лазеры с оптической накачкой


    Лазерный эффект в твердом теле осуществляется благодаря наличию в нем примеси (например, окиси хрома в случае рубина), концентрация которой - единицы процентов. Примеси неодима обеспечивают лазерную генерацию многих твердых структур, из которых чаще используются стекло и алюмоиттриевый гранат (АИГ). Такие лазеры излучают короткие импульсы очень высокой мощности, пиковое значение которой ограничено сверху лишь световым пробоем в активной среде, вызывающим ее повреждение (например, локальное плавление). Лазер на стекле с неодимом (диаметр стержня 10 см) при длительности импульса в одну миллиардную секунды может обеспечить пиковую мощность около триллиона ватт. У более длительных импульсов пиковая мощность меньше.

    Газовые лазеры

    Многие газы и газовые смеси при возникновении в них электрического разряда начинают генерировать лазерное излучение. Их пучки характеризуются очень высокой степенью когерентности и малой расходимостью, близкой к теоретическому пределу; по этим параметрам они выгодно отличаются от пучков твердотельных лазеров. Для решения прикладных задач успешно применяются лазеры с газовой смесью в качестве активной среды (углекислого газа с азотом и гелием, гелия с неоном или криптона со фтором). Лазер первого типа излучает в инфракрасной области спектра; в непрерывном режиме генерации у него высокий КПД и большая выходная мощность. Его широко применяют при резании и сварке различных материалов. Гелий-неоновый лазер излучает видимый (красный) свет; его используют во многих исследовательских и образовательных программах. Лазер на криптоне со фтором - наиболее эффективный из генераторов излучения в ультрафиолетовой области спектра.

    Химические лазеры

    В ходе некоторых химических реакций выделяется много энергии, и в конечных продуктах таких реакций оказывается достаточно возбужденных атомов, чтобы осуществить лазерную генерацию. Наиболее перспективным из лазеров этого типа представляется генератор на фтороводороде, образующемся при прямом взаимодействии атомарных компонентов. Из-за особенностей природы химических лазеров их непрерывная генерация затруднительна. Но этот недостаток восполняется достоинством их импульсных модификаций - они требуют малых энергетических затрат, а составляющие активной среды химических лазеров легко транспортируются на отдаленные объекты, где есть проблемы с сетевым питанием (например, космические летательные аппараты). Лазер на фтороводороде может излучать импульсы очень большой энергии (в несколько тысяч джоулей) при весьма скромном блоке питания.

    Полупроводниковые лазеры

    Если через полупроводниковую структуру типа транзисторной пропускать электрический ток, то можно добиться лазерного эффекта. Габариты и выходная мощность полупроводниковых лазеров малы, но их КПД высок. Такие лазеры делают в основном на арсениде или алюмоарсениде галлия; применяют их главным образом в системах связи.

    Лазеры на красителях

    Многие жидкие органические красители генерируют лазерное излучение при накачке ультрафиолетовым излучением, газоразрядными импульсными лампами и лазерами (обычно газовыми) непрерывного действия. У лазеров на красителях два важных достоинства: во-первых, они способны перестраиваться по длине волны и, во-вторых, могут излучать сверхкороткие импульсы - длительностью менее одной триллионной доли секунды. В связи с этим лазеры на красителях широко применяются в методах спектроскопии, в том числе в спектральном анализе с временным разрешением.

  •  

    Принцип действия лазера

    Свет - особая форма движущейся материи. Он соткан из отдельных сгустков, именуемых квантами. Атомы любого вещества, излучая (или поглощая) свет, испускают (или захватывают) только цельные кванты; в таких процессах (если нет каких-то особых условий) атомы не взаимодействуют с долями квантов. Длина волны (стало быть, цвет) излучения определяется энергией его кванта. Атомы, одинаковые по своей природе, излучают или поглощают кванты лишь конкретной длины волны. Это наглядно проявляется в свечении газоразрядных ламп с однородным наполнением (например, неоном), которые используются в декоративной иллюминации и рекламе. Когда атом излучает квант света, он расходует энергию; поглощая квант света, атом приобретает дополнительную энергию. Поскольку энергия переносится к атому и от него порционно, то и сам атом может пребывать лишь в одном из дискретных энергетических состояний - либо в основном (с минимальной энергией), либо в каком-то из возбужденных. Атом, находящийся в основном состоянии, при поглощении кванта света переходит в возбужденное состояние; при излучении кванта света все происходит наоборот. Чем больше квантов вблизи атомов, тем больше и тех атомов, которые совершают подобные переходы - с повышением или понижением энергии. (Свет своим присутствием вынуждает атомы участвовать в энергетических переходах, поэтому такие процессы называют вынужденными - вынужденное поглощение и вынужденное излучение.) При вынужденном поглощении число квантов уменьшается и интенсивность света убывает, а энергия атомов возрастает. Если некоторое множество атомов, попав в освещение, вынужденно излучает суммарно больше, чем вынужденно поглощает, то возникает лазерный эффект - усиление света вынужденным излучением (данного множества атомов). Лазерная генерация может возникнуть только в том множестве микрочастиц, где возбужденных атомов больше, чем невозбужденных. Следовательно, такое множество надо заранее подготовить, т.е. предварительно накачать в него дополнительную энергию, черпая ее от какого-либо внешнего источника; эта операция так и называется - накачка. Типы лазеров различаются в основном по видам накачки. Накачкой могут служить: электромагнитное излучение с длиной волны, отличающейся от лазерной; электрический ток; пучок релятивистских (чрезвычайно быстрых) электронов; электрический разряд; химическая реакция в пригодной для генерации среде. Посеребренные торцы цилиндрического стержня из искусственного рубина служат зеркалами Одно из них покрыто менее плотным слоем серебра, поэтому оно полупрозрачно и через него излучается лазерный свет. Рубин - кристалл, состоящий из окиси алюминия с примесями окиси хрома. Атомы алюминия и кислорода не играют определяющей роли в лазерной генерации; главные энергетические переходы реализуются в хроме. При возбуждении атомы хрома переходят из основного состояния на один из двух уровней возбуждения. Они довольно широки, и атомы хрома возбуждаются многими длинами волн света накачки. Однако вследствие нестабильности они мгновенно покидают уровни F и переходят на более низкий уровень E; при этих переходах излучения не происходит, а высвобождаемая энергия передается кристаллической решетке окиси алюминия, где и рассеивается в форме тепловых потерь. Однако с уровня E атом хрома излучает вынужденно и переходит вследствие этого на основной уровень. Кванты, эмиттированные атомами хрома, многократно отражаются между посеребренными зеркалами рубинового стержня и по пути вынуждают многие возбужденные атомы испускать такие же кванты; процесс нарастает лавинообразно и заканчивается импульсом лазерного света. Полупрозрачное зеркало должно хорошо отражать лазерное излучение, чтобы обеспечить необходимую интенсивность его вынуждающей доли, но одновременно и побольше пропускать его на выход; обычно его коэффициент отражения - ок. 80%. При самопроизвольном излучении атом хрома пребывает на возбужденном уровне E не более 1077 с, а при вынужденном - в 10 тысяч раз дольше. Поэтому у лазерного света достаточно времени, чтобы вызвать вынужденное излучение огромного числа возбужденных атомов активной среды.

    Лазерное излучение реализовано во многих активных средах - твердых телах, жидкостях и газах.

  •  

    Что такое лазер?

    Лазер - это термин - аббревиатура, составленная из начальных букв английской фразы «Light Amplification by Stimulated Emission of Radiation». В переводе это означает «усиление света с помощью вынужденного излучения».

    «Вынужденность» излучения состоит в том, что оно возникает после стимуляции атомов рабочего вещества внешним электромагнитным полем. За счет многократного отражения в системе зеркал излучение усиливается, и в итоге мы получаем явление, физические свойства которого не имеют аналогов в природе. Лазерное излучение формирует узкие световые пучки с очень большой мощностью.

    Лазеры различаются в основном по видам накачки. Накачкой могут служить: электромагнитное излучение с длиной волны, отличающейся от лазерной; электрический ток; пучок релятивистских (чрезвычайно быстрых) электронов; электрический разряд; химическая реакция в пригодной для генерации среде.

    Луч лазера нашел применение в информационной технике и прокладке трасс, для измерения расстояний и для получения объемных изображений предметов - голограмм, в обработке металлов и пластиков, в хирургии и косметологии, в средствах уничтожения и средствах спасения людей.

    Можно без преувеличения сказать, что лазеры, появившиеся в середине XX века, сыграли такую же роль в жизни человечества, как электричество и радио полустолетием раньше.

  •  

    Лазерные указки - полезные технические изобретения или нет?


    С точки зрения техники, лазерные указки являются узконаправленными лучевыми портативными генераторами монохроматических и когерентных электромагнитных волн. В основе таких устройств почти всегда лежит лазерный диод с диапазоном ненаправленного излучения - 635—670 нм.

    У лазерной указки довольно низкий КПД, с точки зрения практического применения, поэтому она не используется для организации серьезного излучения узкого направления. Для этих целей на производстве и в научных лабораториях применяют двояковыпуклую линзу-коллиматор.

    Однако, если качественно сфокусировать луч, указка перестает быть детской игрушкой и учительским "аксессуаром" и вполне может использоваться для организации ряда интересных опытов с лучом лазера, проводимых в лабораторных условиях. Например, с помощью лазерного узконаправленного генератора проводятся научные эксперименты, позволяющие изучить такое явление, как интерференция.

    Сегодня в магазинах есть указки, мощность которых от 0,1 до 2000 мВт. Как правило, красный диод в этих образцах не закрыт, поэтому обращаться с устройствами нужно очень осторожно. Именно поэтому портативный генератор не рекомендуется использовать в качестве игрушки и покупать детям. Кроме того, через некоторое время лазерный диод сгорает, и устройство практически перестает излучать свет.

    Первые экспериментальные образцы указок были не слишком мощными, но дорогими, благодаря использованию гелий-неоновых и газовых лазеров. Затем появились более дешевые красные диоды, позволившие сделать указку доступной обычным покупателям. Более серьезные варианты - устройства с оранжево-красными, а также с зелеными, фиолетовыми, желтыми и синими диодами.

    Конечно, нельзя считать этот аппарат практичным устройством, используемым в промышленности, производстве или научных исследованиях. Однако это, все-таки, техническое изобретение, которое активно применяется, например, в образовательных учреждениях разного уровня вместо обычной школьной указки, а также на бизнес-презентациях как в помещениях, так и в открытом пространстве.


    Зеленые указки, в отличие от красных, можно использовать для демонстраций, проходящих в дневных условиях, а также на дальних расстояниях. Любители астрономии, например, применяют именно зеленый вариант лазерной указки, чтобы демонстрировать желающим ночью звезды или даже целые созвездия. Особенно хорошо это удается в темные, безлунные ночи.

    Активно используют портативные лазерные генераторы радиолюбители. Для своих конструкций в качестве элемента связи, работающего в видимых пределах, они довольно часто применяют именно лазерные указки на диодах. А, если снять с устройства коллиматор, то оно очень пригодится в любительской голографии.
    Такой портативный лазер можно использовать в качестве прицела для пневматического и даже огнестрельного оружия, если установить его неподвижно.

    В любом случае, применение такого технического устройства сопряжено с довольно серьезной опасностью для человека. Прежде всего, излучение лазером чрезвычайно опасно для глаз. По международной классификации опасности технических устройств, лазерные указки относят к 2 или даже 3 классу подгрупп А и Б. На них нельзя смотреть долго, а также через любую оптику.

    Чем выше уровень мощности портативного лазерного генератора, тем больше уровень и класс опасности устройства. Импульсы практически прямого лазерного луча, в том числе, диффузно отраженного или зеркального, способны нанести непоправимый вред человеческому глазу и даже лишить зрения.
    Любые лазерные указки обладают исключительно раздражающим воздействием. Если такой луч направлен специально в глаза шофера ведущего машину, избежать аварии будет крайне сложно. Человек на какое-то время может потерять ориентацию в пространстве, что, безусловно, негативно отразится на управлении транспортным средством.

    В последнее время произошло несколько вопиющих случаев, когда луч от мощной лазерной указки был направлен в глаза пилотам, заходящих на посадку пассажирских самолетов. Таким образом, опасности подвергалось несколько десятков жизней пассажиров воздушных судов.
    Подобные неприятные инциденты возмущают общественность, которая четко требует ограничить законодательно свободную реализацию портативных лазерных генераторов через торговую сеть. Такие требования звучат сегодня не только в России, но и в других странах мира, например, в Канаде, Великобритании и США. Дальше всех пошло графство Уэльс - тамошние законы, например, предусматривают за хулиганское лазерное нападение уголовную ответственность, которая, в свою очередь, чревата лишением свободы на срок до 14 лет. Простое обладание подобным устройством будет стоить владельцу довольно солидного штрафа.

    Лазерную указку никак нельзя назвать полезным техническим изобретением, поскольку для каких-то серьезных целей научного и промышленного характера существуют более солидные устройства, а в качестве игрушки этот аппарат слишком опасен как для владельца, так и для окружающих его людей. Скорее, портативный лазер можно отнести к разряду изобретений, что называется, "для красоты", чтобы продемонстрировать определенные возможности лазера.


  • Купить зеленый лазер в Москве